
SVILUPPO DELLA GEOMETRIA CON L’USO STRUTTURALE DELLE TRASFORMAZIONI GEOMETRICHE

 
Nelle giornate del GIMat del 21 e 22 Ottobre scorso ho tenuto un seminario dal titolo sopra scritto. Purtroppo la dilatazione dei tempi precedenti il  
mio seminario ha dimezzato la durata del mio intervento. Ciò non mi ha consentito di esporre in modo esauriente quanto previsto e non ha permesso  
le osservazioni dei partecipanti che sarebbero state molto utili per arricchirci reciprocamente. 
Per ciò ho pensato di fare pubblicare su Aetnanet quanto avevo preparato, per esporre più compiutamente le mie idee.

Premessa
Per delineare  l’aspetto  metodologico-didattico che  sta  alla  base  del  mio  contributo  prendo l’avvio da  tre  punti  indicativi  delle  conclusioni  del  
Congresso internazionale di Cagliari sull’insegnamento della geometria del 1982: 

 «Di geometria ne va insegnata parecchia, a tutti i livelli di scolarità; più di quanto si usa attualmente (figuriamoci ora!). 
 «All’inizio del biennio di scuola superiore occorre prevedere uno stadio di avvio alla deduzione. Mentre l’assetto assiomatico  deve essere 

l’obiettivo finale dell’attività didattica, ma non ne può costituire in alcun modo il punto di partenza». 
 Poiché l’assiomatica di Hilbert, è molto complessa,  l’insegnante ne deve possedere una, sottintesa:

        - più intuitiva, semplice, dai pochi assiomi  forti;
        - aderente  al Programma di Erlangen di Klein

Faccio notare che la geometria nei libri di testo è spesso relegata nelle ultime pagine, come se fosse figlia di un Dio minore, e le trasformazioni sono  
trattate “en passant”. Diventano così un’incomprensibile, pesante e inutile sovrastruttura.

Caratteristiche dell’uso delle trasformazioni
- Mentre nella trattazione classica si pone l’accento su singole figure, di  cui si  studiano alcune proprietà con metodi specifici,  con le  

trasformazioni è coinvolto tutto l’ambiente in cui si opera; ciò consente una maggiore generalità, sistematicità e unitarietà dei metodi di  
studio.  

- Si possono usare sin dall’inizio i suggestivi metodi della geometria analitica, utile anche nello studio della Fisica già dal primo anno. 
- È  fondamentale  la  ricerca  degli  invarianti,  mezzo  basilare  dell’indagine  scientifica:  in  fisica  sono  importantissime  le  leggi  di 

conservazione, cioè d’invarianza. Per le isometrie l’invariante è la distanza tra due punti, cioè la lunghezza del percorso più breve che li  
congiunge.

          -       All’inizio una strategia è la ricerca di qualche simmetria.
          -       Ulteriore elemento di forza delle trasformazioni risiede nella loro struttura di gruppo e nei loro  sottogruppi.
Segnalo infine che nel Programma di Erlangen del 1872,  Klein propose, e  la comunità scientifica fece proprio che:
“Una   geometria è lo studio delle proprietà che si conservano quando si sottopone il piano (lo spazio) a un   gruppo di trasformazioni  ”. 

Il mio intento consiste nel presentare l’assiomatica di Choquet (1964) che soddisfa le  condizioni del terzo punto in premessa e che è già stata 
utilizzata, con qualche variante, negli interessanti testi scolastici di Lombardo Radice-Mancini Proia e Prodi. L’uso delle isometrie, in particolare della  
simmetria assiale, è lo strumento sia euristico sia dimostrativo.

ASSIOMI DELLA GEOMETRIA PIANA

ASSIOMA I (di incidenza)
Per due punti distinti passa una ed una sola retta.
ASSIOMA II (di Euclide)
Per un punto si può condurre una ed una sola retta parallela a una retta.
ASSIOMA III (di ordine)
Ogni retta è dotata di due relazioni d’ordine totale, una opposta all’altra.
ASSIOMA IV (o di partizione)

Data nel piano una retta r, l’insieme complementare di r rispetto a  è suddiviso in due sottoinsiemi, detti semipiani aperti, non vuoti, dotati di 

infiniti punti e tali che:

 il segmento che congiunge due qualunque punti di uno stesso semipiano aperto non interseca r;

 il segmento che congiunge due qualunque punti di semipiani aperti diversi incontra r.

ASSIOMA V (della distanza)

Esiste una funzione d, detta distanza, che associa un numero reale r0, che indichiamo con d(A,B), con le seguenti proprietà:

 d(A,B)=0 se e solo se AB;

 per ogni coppia di punti (A,B), d(A,B)=d(B,A) (proprietà simmetrica della distanza);

 assegnati una semiretta s di origine O ed un numero reale r0, su s esiste uno ed un solo punto P tale che d(OP)=r;

 per ogni terna di punti {A, X e B} si ha:

d(A,B)d(A,X)+d(X,B), 

      dove l’uguaglianza vale se e solo se X appartiene al segmento AB.
ASSIOMA VI (di simmetria)

Per ogni retta s di  esiste una ed una sola simmetria di asse s.

ASSIOMA VII (della misura degli angoli)

Esiste una funzione che ad ogni numero reale r0 associa un angolo, di cui r è detto la misura o ampiezza, tale che alla somma di due angoli  

consecutivi corrisponde il numero somma delle ampiezze dei due angoli.

Piano di lavoro
Nota per i giovani sui “corpi rigidi”.
Molti dei corpi che ci circondano hanno una struttura rigida, cioè, anche se vengono sottoposti a movimenti, la distanza di due qualsiasi loro punti  
rimane invariata. Questa caratteristica ci permette di stabilire un’importante corrispondenza biunivoca trai punti del piano.
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A questo punto, alcune attività fatte svolgere agli allievi e la presentazione discussa di file di Cabrì progettato ad hoc, consentono loro di assimilare la 
nozione di corrispondenza biunivoca fra i punti di un piano (di due piani sovrapposti) e ricavare le proprietà fondamentali delle isometrie:

 Una     retta     ha  per  immagine     una  retta,  cioè,  se  un punto P descrive  una  retta  r,  il  suo  associato P  traccia  una  retta  r'  che  diciamoˈ  
corrispondente di r. 

• Una semiretta si tramuta in una semiretta. 
• Un segmento si trasforma in un segmento di uguale lunghezza. 
• Un semipiano ha per immagine un semipiano. 
• L’associato di un angolo, è un angolo di uguale ampiezza.
• Rette incidenti hanno per corrispondenti rette incidenti.
• Rette parallele si trasformano in rette parallele.

Segue quello che avrei presentato.
Messa in rilievo l’importanza della simmetria bilaterale o speculare in natura e arte presento alcuni progetti che ho realizzato con Cabrì, che dal 
piegamento del foglio conducono alla simmetria assiale, di cui mostro le sequenze delle situazioni che si presentano.
Piegamento del foglio

Ribaltamento di un piano (di due piani sovrapposti) attorno a una sua (loro) retta.

La simmetria assiale: regina e “madre” di tutte le isometrie. 
Infatti, come proveremo in seguito, tutte le isometrie si possono ottenere applicando successivamente al più   tre   simmetrie assiali.

Simmetria rispetto a una retta o simmetria assiale.
Per quanto già osservato possiamo dare la definizione: 
Data una retta   a  , diciamo simmetria di asse   a  , l’isometria tale che:

o      Tutti e soli i punti di   a   sono uniti. (  Si dice pure che la retta   a   è luogo di punti uniti  ).
o Ogni punto di uno dei semipiani aperti determinati da a si trasforma in un punto del semipiano aperto opposto.

Dalla prima caratteristica della simmetria assiale, sappiamo che l’asse è costituito di punti uniti. Per la seconda è spontaneo  
chiedersi se la retta che passa per un punto  P che non appartiene all’asse e per il  suo corrispondente  P gode di qualcheˈ  
particolare proprietà.
Chiamiamo  sa la simmetria di asse a,  P un punto che non le appartiene e  P'  il  suo simmetrico. Poiché  P e  P  stanno inˈ  
semipiani aperti opposti, il segmento PP interseca a in un punto, diciamolo H, che per ciò è unito. Allora la retta PP  ˈ è anche 
la retta, PH o P Hˈ ; ma esse sono corrispondenti in sa, quindi la retta PP  è unita nella simmetria rispetto ad ˈ a. 
Quanto provato costituisce il
Teorema 
In una simmetria assiale la retta che congiunge due punti corrispondenti distinti è unita.
Sotto la forma condizionale:
Se sa è la simmetria assiale rispetto a una retta a, allora la retta per due punti associati distinti è unita in sa.

Osservazione
Gli angoli formati dall’asse e dalla retta PPˈsono di uguale ampiezza perché associati in un’isometria e sono retti perché supplementari. 
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Visto il ruolo speciale che ha la retta che congiunge due punti corrispondenti distinti diamo la seguente 
Definizione
Una retta   b   si dice   perpendicolare   a una retta   a  , se   b   è diversa   da   a   e   unita   nella simmetria di asse   a.

L’osservazione precedente “salda” la nuova definizione di perpendicolarità con quella nota dalla scuola media e la comprende.
Il teorema e la definizione precedenti assicurano il 
Corollario 1
Per un punto fuori di una retta passa una e una sola perpendicolare alla retta data.
La perpendicolare da un punto a una retta è la retta che passa per il punto dato e per il suo simmetrico rispetto alla retta assegnata.
E’ naturale chiedersi se questa proprietà è vera anche quando il punto appartiene alla retta. A ciò risponde affermativamente il teorema successivo 
[È importante fare assimilare con diverse applicazioni questo nuovo modo d’intendere la perpendicolare a una retta da un punto dato]
Teorema 
Per un punto di una retta si può condurre una sola perpendicolare alla retta.
Chiamiamo P il punto, a la retta ed sa la simmetria di asse a; proviamo che esiste per P una sola retta unita in sa, servendoci del teorema precedente. 
Sappiamo che per un punto Q


a possiamo condurre una sola perpendicolare r ad a, che è unita in sa: r'≡r. La retta che 

cerchiamo deve essere una “particolare” retta per P : la parallela s per P a r. Determiniamo la retta s  ˈ simmetrica di s. La 
retta s' deve passare per P perché  punto unito in sa e  inoltre essere parallela a r'≡r, perché in un’isometria rette parallele si 
trasformano in rette parallele. Allora sˈ deve passare per P ed essere parallela a r: poiché è unica la parallela da un punto ad 
una retta s  ˈ coincide con s, quindi perpendicolare ad a in forza della definizione data.

Il Corollario 1 e il Teorema precedente assicurano il
Teorema 
Per ogni punto del piano esiste una sola perpendicolare a una retta data.

(La dimostrazione di esistenza e unicità della perpendicolare da un punto a una retta nella trattazione classica è lunga, artificiosa e pesante).

Affrontiamo ora il seguente problema.
Dati un punto P e una retta a cui non appartiene, tra i punti di a ne esiste uno la cui distanza da P sia minima?
Esso deve essere un “particolare” punto di a, come possiamo trovarlo? Usiamo, come di frequente, la simmetria sa rispetto ad a. 
Sia P' il simmetrico  di P; l’intuizione ci suggerisce che il nostro punto è H, quello comune, ad a e alla retta PP'; proviamolo 
confrontando 

PH
e 

PA
, dove A è un altro qualsiasi punto di a (figura).

Poiché vogliamo provare che
PH

<
PA

, applichiamo la proprietà triangolare al triangolo  PPˈA: (*)
'PP
<

PA
+

'AP
; poi (**) 

'HP
=

HP
 e 

AP'
=

AP
 perché lunghezze di segmenti simmetrici. Ma 

'PP
=

PH
+

'HP
, quindi, per la (*)

PH
+

'HP
<

AP
+

'PA
, e 

per la (**) 2
PH

< 2
PA

, cioè 
PH

<
PA

;  che è quanto intuito. 

Abbiamo così scoperto il
Teorema 
Se P è un punto fuori di una retta a, allora esiste su a un solo punto la cui distanza da P è minima. 
Esso è il punto H comune ad a e alla perpendicolare per P ad a. Chiaramente se il punto sta sulla retta quello cercato è se stesso.

Il precedente risultato è particolarmente importante perché esprime la perpendicolarità in termini di distanza minima tra un punto e una retta: 
(**) La perpendicolare da un punto P a una retta a si può pensare così come la retta per P e per il punto di  a che possiede distanza minima da P; 
questa si   definisce distanza di   P   da     a. 
In riferimento alla figura precedente, il segmento PA, con A≠H proiezione di P su a, si dice segmento di obliqua.
Il teorema precedente ci dice inoltre:
La lunghezza di ogni segmento di obliqua da un punto a una retta è maggiore della distanza del punto dalla retta. 

A questo  punto  dell’esposizione  vi  presento  alcuni  teoremi  e  problemi  che  mettono  in  luce  l’importanza  dell’uso  della  simmetria  assiale  e  ne 
chiariscono le modalità con cui utilizzarla.

Teorema  
In un'isometria rette perpendicolari si trasformano in rette perpendicolari. 
Siano r ed s due rette perpendicolari, H il loro punto comune e P un punto di r diverso da H; indichiamo con r
, ˈ s  nell’ordine, le rette corrispondenti di ˈ r ed s in una isometria σ, e con H  e ˈ P , rispettivamente, gli associatiˈ  

di H e P. 
Poiché per ipotesi  s è perpendicolare a r, allora  H è il punto di r a distanza minima da  P, ma allora H deveˈ  
essere il punto di  r a distanza minima da  ˈ P  perché in un’isometria si  conservano le distanze:  ˈ s  è dunqueˈ  
perpendicolare a r .ˈ
È opportuno far notare ai giovani che il grafico, in questo caso,  non è di alcun aiuto, ma lo sono le proprietà.

È semplice provare le proposizioni:
Teorema 
Se una retta interseca l’asse in un punto allora la retta simmetrica incontra l’asse nello stesso punto. 
Teorema 
In una simmetria assiale una retta parallela all’asse si trasforma in una retta parallela all’asse.
Se una retta è parallela all’asse di simmetria allora la sua corrispondente è parallela all’asse.
Corollario  (importante)
Se due rette corrispondenti in una simmetria assiale sono incidenti, allora il loro punto comune è unito, cioè appartiene all’asse.

Teorema 

3

H
s

s'

r'H'

r
P

P'

a P

s'=s

H

Qs//r

r'=r

a

P

A

P'

p

H



 Se due rette sono parallele, allora ogni perpendicolare a una è perpendicolare all’altra. 
 Siano b e c le rette parallele e a la perpendicolare a c in un suo punto C. Proviamo che b', trasformata di b nella simmetria sa 

di asse a, coincide con b. Infatti, in sa c è unita per ipotesi, e b', la simmetrica di b deve passare per B che è unito ed essere 
parallela a c perché in un’isometria rette  parallele hanno immagini parallele. 

Teorema 
Se due rette sono parallele, allora le distanze dei punti di una dall’altra sono uguali. 
Siano b e c due rette parallele,  P e  Q  due qualsiasi punti di una di esse, a esempio b, e  H e K nell’ordine le proiezioni ortogonali di  P e  Q su c: 
proviamo, come suggerisce l’intuizione, che 

PHQK 
. 

Innanzitutto PH e QK sono rette parallele perché perpendicolari alla retta c. Poi è ragionevole servirsi della simmetria  
sa rispetto all’asse a del segmento PQ e provare che ad H è associato K. Infatti, l’immagine H' di H in sa deve stare su 
c che è retta unita perché perpendicolare all’asse e avere da b distanza minima: questo punto è K, quindi H'≡K e da ciò

PHQK 
, che è la tesi.

Questa proprietà si può applicare in geometria analitica al primo anno per ottenere le equazioni di rette parallele agli assi.

Teorema
Se in un triangolo due angoli sono disuguali, allora a lato maggiore è opposto angolo maggiore (figura).
Sia ABC un triangolo in cui

AC
>

BC
. Consideriamo la simmetria sa rispetto all’asse a del segmento AB. Dalle proprietà 

dell’asse di un segmento  A e  C appartengono a semipiani aperti opposti,  quindi  AC interseca  a in  D. In  sa BÂD si 

trasforma in 
DBA ˆ

, che ha uguale ampiezza; 
DBA ˆ

<
CBA ˆ

perché interno a questo: da ciò la tesi.

Confronto fra le dimostrazioni classica e moderna del teorema: 
Se un triangolo ha due angoli congruenti (isometrici) allora è isoscele. 
Sappiamo tutti che la dimostrazione classica è artificiosa, lunga e complessa (figura in basso a sinistra). Vediamo come usando la simmetria assiale  
tutto è più semplice e chiaro.
Sia ABC un triangolo di base AB; per l’ipotesi 

BA ˆˆ 
(figura in basso). Usiamo la simmetria sa rispetto all’asse a della base, che passa per il suo punto 

medio H. In sa la semiretta 
AB

 ha per immagine la semiretta 
BA

, e la semiretta 

BC
si trasforma nella semiretta di origine A – simmetrico di B – e che 

forma con 
AB

 un angolo di ampiezza uguale a  
B̂

:  questa  è  la  semiretta  
AC

.  Allora  le 

semirette  corrispondenti  
BC

 e  
AC

 sono incidenti  in  C,  che  risulta  unito  (Corollario 

importante),  e  quindi  sta  sull’asse  del segmento BC: la retta  CH è asse di simmetria 
per il triangolo ABC che risulta così isoscele.

.

Teorema
In una circonferenza ogni angolo alla circonferenza è metà dell’angolo al centro che insiste sullo stesso arco. 
La dimostrazione classica presenta vari casi e sottocasi.
Utilizziamo la simmetria considerando il caso in cui i lati dell’angolo alla circonferenza sono secanti. Ricordo che:  il 
“prodotto” di due simmetrie con assi incidenti è una rotazione, cioè un angolo, la cui ampiezza è doppia di quello 
formato dai due assi. 
Siano BÂC e BÔC (figura) gli angoli esaminati. Consideriamo l’angolo xÔy formato dagli assi dei lati  AB e  AC. La 
simmetria sx  di asse x trasforma B in A e quella sy di asse y muta A in C, quindi la rotazione ρ=y*x associa C a B e dà 
l’angolo BÔC che risulta doppio di xÔy. Questo poi ha la stessa ampiezza di BÂC perché angoli a lati perpendicolari e 
dello stesso verso: allora l’angolo BÔC ha ampiezza doppia di BÂC, da cui la tesi.

Problema
Sui lati dell’angolo   rÔs   (figura) si prendano i punti   A   e   B   su   r   e   C   e   D   su s tali che 

OAOC 
 e 

OBOD 
. 

Dimostrare che il punto   P   comune alle due corde appartiene alla bisettrice.
La dimostrazione classica è lunga e laboriosa, svolgetela e ve ne renderete conto.
Con la simmetria tutto è più semplice e immediato. Infatti, poiché la bisettrice di un angolo è l’asse di simmetria dei 
suoi lati, consideriamo la simmetria sb di asse la bisettrice. In sb ad A corrisponde C e B ha per immagine D in forza 
delle ipotesi; allora AD e CB sono segmenti corrispondenti e incidenti nella simmetria, quindi il loro punto comune P 
è unito in sb (Corollario importante) e di conseguenza sta sulla bisettrice.

Teorema
Se un quadrilatero convesso è inscritto in una circonferenza, allora i suoi angoli opposti sono supplementari.
In diversi testi ho trovato la seguente dimostrazione che sintetizzo usando la figura.
Consideriamo a esempio gli angoli alla circonferenza Â e Ĉ che sono opposti. Â è metà dell’angolo BÔC (in rosso) e Ĉ 
metà di DÔB (in blu); poiché BÔC+DÔB è un angolo giro, Â+Ĉ vale un angolo piatto.
Secondo me tale argomentazione presenta almeno un’incongruenza che cerco di chiarire.
Si dice che BÔC+DÔB è un angolo giro (che presenta anch’esso delle criticità): ma la somma dei questi due angoli non 
ha  senso  perché  non sono  consecutivi,  infatti  non hanno un solo  lato comune,  ne 
posseggono due OB e OD. 
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Gradirei che mi fosse segnalato cosa non è corretto nel mio ragionamento.
Ecco un’altra dimostrazione che utilizza la simmetria della circonferenza rispetto a ogni retta per il suo centro. 
Considero l’asse di simmetria a di una corda – nel grafico DB – e osservo che: 1)

BCDBED ˆˆ 
 perché angoli alla circonferenza che insistono sull’arco

DFB
e 2)

BADBFD ˆˆ 
perché angoli alla circonferenza che sono capaci dell’arco DEB. Nei triangoli EDF ed EBF sono complementari

EFD ˆ
ed 

DFE ˆ
e anche  

BEF ˆ
e

EFD ˆ
 perché i triangoli  EDF e  EBF sono rettangoli in quanto inscritti in una semicirconferenza: allora  

DFBBED ˆˆ 
 dà un angolo 

piatto e da 1) e 2) 
DABBCD ˆˆ 

risulta un angolo piatto, e da ciò la tesi. 

Analoghe argomentazioni per gli angoli opposti 
B̂

e
D̂

, usando l’asse della diagonale AC.

Comparazione delle dimostrazioni nei sistemi tradizionale e “moderno” del teorema:
In ogni triangolo isoscele le altezze e le mediane relative ai lati congruenti (isometrici) sono congruenti (isometriche); inoltre le bisettrici degli angoli  
alla base sono congruenti (isometriche).
Nello  studio  tradizionale  si  devono  fare  tre  dimostrazioni  con  tre  diversi  criteri  di  congruenza  (tra  cui  quello  dei  triangoli  rettangoli  poco 
“frequentato”), che sono complesse perché i triangoli sono “incastrati” uno nell’altro.
Nello sviluppo “moderno”, un triangolo si dice isoscele se ha un asse di simmetria, CH per noi: 
 C è unito e  A e  B sono corrispondenti, quindi  

CBCA 
. Con la simmetria  sCH  di asse  CH otteniamo le tre proprietà poiché in un’isometria si 

conservano lunghezze e ampiezze.
Altezze: nella simmetria sCH  CA e CB sono corrispondenti e il punto E, che è quello di CB a distanza minima da A, si trasforma nel punto di CA a 
distanza minima da B, cioè D, perché in un’isometria le distanze si conservano: allora 

BDAE 
.

Mediane: In sCH CA e CB sono associati ed M1, punto medio di  AC, ha  per  immagine  il  punto  medio  di  BC,  ossia  M2  , 
perché in un’isometria le distanze rimangono invariate; dunque: 

12 BMAM 
. 

Bisettrici: 
 In sCH  CA e CB sono corrispondenti e la semiretta AE si tramuta nella semiretta di origine B – simmetrico di A - e che forma con la semiretta BA un 

angolo  di  ampiezza  pari  a  quella  di  BÂE,  ma questa è la semiretta BD; allora nella simmetria sCH E ha per immagine 
D, quindi 

BDAE 
.

Problema 
Un’impresa ha due grossi depositi di materiale per l’edilizia su una strada al confine di una città. Ha vinto la gara d’appalto per costruire in una zona  
pianeggiante fuori città una strada che sarà parallela a quella in cui sono i depositi. In quale punto del tracciato dovrà costruire il cantiere di lavoro se  
vuole che i mezzi di trasporto, partendo da un deposito portino materiali al cantiere e da questo i rifiuti all’altro deposito facendo il percorso più breve  
e quindi più economico in costi e tempi? 
Schematizziamo la situazione come in figura, in cui  A e  B sono i depositi  e  a la  strada da costruire.  Usiamo la 
simmetria sa di asse a;  sia B' (o A') il simmetrico di B (di A). Il segmento AB' è il percorso più breve tra A e B' e 
interseca a nel punto C, poiché A e B' sono in semipiani aperti opposti rispetto ad a; poiché in sa C è punto unito e a B 

corrisponde  B',  
CBCB '

,  quindi  (*)
'' ABCBACCBAC 
.  Costruiamo ora  un  altro  percorso  da  A a  B 

passando per un punto K di a da diverso da C. Poiché 
KBKB '

, 
KBAK 

=
'KBAK 
; per la proprietà triangolare 

applicata ad AKB' abbiamo:
'' KBAKAB 
, cioè 

KBAKAB '
. Per la (*) questa diventa 

KBAKCBAC 
: C è il punto cercato.

Ho tradotto in una situazione concreta il problema di minimo:
Fra i triangoli di base e altezza assegnate, quello di perimetro minimo è il triangolo isoscele. 
Infatti, dopo quanto provato, 

CABBCH ˆ'ˆ 
perché corrispondenti delle parallele AB e a, tagliate da AB', e 

HCBABC ˆˆ 
essendo alterni interni delle 

parallele AB e a tagliate da CB: allora ABC è isoscele sulla base AB.     

Spero di avere chiarito quanto mi ero proposto, per quanto è possibile in una sintesi.
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